home Home » Aptitude » Trigonometry » Objective Questions

Aptitude TrigonometryPage 1

1.

In a △ABC right angled at B if AB = 12, and BC = 5 find sin A.
(a)5 / 13
(b)5 / 12
(c)13 / 5
(d)12 / 5
Answer is: A
AC = √(AB)2 + (BC)2
AC = √(12)2 + (5)2
= √144 + 25
= √169 = 13
When we consider t-ratios of ∠A we have
Base AB = 12
Perpendicular = BC = 5
Hypotenuse = AC = 13
Sin A = (Perpendicular / Hypotenuse) = 5 / 13

2.

Find the value of 2sin2 300 tan 600 - 3cos2 600 sec2 300
(a)(√3 - 2) / 2
(b)(√3 - 2) / 3
(c)(√3 - 1) / 2
(d)(√3 - 2) / 5
Answer is: A2(1 / 2)2 x √3 - 3(1 / 2)2 x (2 / √3)2
= 2 x (1 / 4) x √3 - 3 x (1 / 4) x (4 / 3)
= √3 / 2 - 1 = (√3 - 2) / 2

3.

Find the value of X.
tan 3X = sin 45o cos 45o + sin 30o
(a)10o
(b)15o
(c)20o
(d)30o
Answer is: Btan 3X = sin 45o cos 45o + sin 30o
tan 3X = (1 / √) x (1 / √2) + (1 / 2)
tan 3X = 1 / 2 + 1 / 2 = 1
tan 3X = 1
tan 3X = tan 45o
3X = 45o
X = 15o

4.

If X is an acute angle tan X + cot X = 2 find the value of tan7X + cot7X.
(a)5
(b)2
(c)3
(d)4
Answer is: Btan X + cot X = 2
tan X + 1 / tan X = 2
tan2X + 1 = 2tan X
tan2X - 2tan X + 1 = 0
(tan X - 1)2 = 0
tan X = 1
tan X = tan 45o
X = 45o
Now, tan7X + cot7X
= tan745o + cot745o
= 1 + 1 = 2

5.

Find the value of
sin 36o / cos 54o - sin 54o / cos 36o
(a)0
(b)1
(c)2
(d)3
Answer is: Asin 36o / cos 54o - sin 54o / cos 36o
sin (90 - 54)o / cos 54o - sin (90 - 36)o / cos 36o
cos 54o / cos 54o - cos 36o / cos 36o
1 - 1 = 0

6.

Evaluate the cot 12o cot 38o cot 52o cot 60o cot 78o.
(a)√3
(b)3√3
(c)1 / √3
(d)3 / √3
Answer is: CWe have
cot 12o cot 38o cot 52o cot 60o cot 78o
= (cot 12o cot 78o) (cot 38o cot 52o) cot 60o
= [cot 12o cot (90o - 12o)] [cot 38o cot (90o - 38o)] cot 60o
= [cot 12o tan 12o] [cot 38o tan 38o] cot 60o
= 1 x 1 x 1 / √3 = 1 / √3

7.

If tan 2X = cot (X + 6o), where 2X and X + 6o are acute angles.
Find the value of X.
(a)14o
(b)25o
(c)28o
(d)32o
Answer is: CWe have,
tan 2X = cot (X + 6o)
cot (90o - 2X) = cot (X + 6o)
90 – 2X = X + 6o
3X = 84o
X = 28o

8.

Find the value of [(1 + cot X) - cosec X] [1 + tan X + sec X]
(a)0
(b)2
(c)6
(d)8
Answer is: B[(1 + cot X) - cosec X] [1 + tan X + sec X]
[1 + (cos X / sin X) - (1 / sin X)][1 + (sin X / cos X) + (1 / cos X)]
= [(sin X + cos X - 1) / sin X][(cos X + sin X - 1) / cos X]
= [(sin X + cos X)2 - 1 / sin X cos X]
(sin 2 X + cos2 X + 2 sin X cos X - 1) / sin X cos X
(1 + 2 sin X cos X - 1) / sin X cos X = 2

Comments

No comment yet.

copyright 2014-2018 This site is powered by sNews | Login