Aptitude TrigonometryPage 1
1. | In a △ABC right angled at B if AB = 12, and BC = 5 find sin A. | (a)5 / 13 | (b)5 / 12 | (c)13 / 5 | (d)12 / 5 |
|
Answer is: A
AC = √(AB)2 + (BC)2
AC = √(12)2 + (5)2
= √144 + 25
= √169 = 13
When we consider t-ratios of ∠A we have
Base AB = 12
Perpendicular = BC = 5
Hypotenuse = AC = 13
Sin A = (Perpendicular / Hypotenuse) = 5 / 13
2. | Find the value of 2sin2 300 tan 600 - 3cos2 600 sec2 300 | (a)(√3 - 2) / 2 | (b)(√3 - 2) / 3 | (c)(√3 - 1) / 2 | (d)(√3 - 2) / 5 |
|
Answer is: A2(1 / 2)2 x √3 - 3(1 / 2)2 x (2 / √3)2
= 2 x (1 / 4) x √3 - 3 x (1 / 4) x (4 / 3)
= √3 / 2 - 1 = (√3 - 2) / 2
3. | Find the value of X.
tan 3X = sin 45o cos 45o + sin 30o | (a)10o | (b)15o | (c)20o | (d)30o |
|
Answer is: Btan 3X = sin 45o cos 45o + sin 30o
tan 3X = (1 / √) x (1 / √2) + (1 / 2)
tan 3X = 1 / 2 + 1 / 2 = 1
tan 3X = 1
tan 3X = tan 45o
3X = 45o
X = 15o
4. | If X is an acute angle tan X + cot X = 2 find the value of tan7X + cot7X. | (a)5 | (b)2 | (c)3 | (d)4 |
|
Answer is: Btan X + cot X = 2
tan X + 1 / tan X = 2
tan2X + 1 = 2tan X
tan2X - 2tan X + 1 = 0
(tan X - 1)2 = 0
tan X = 1
tan X = tan 45o
X = 45o
Now, tan7X + cot7X
= tan745o + cot745o
= 1 + 1 = 2
5. | Find the value of
sin 36o / cos 54o - sin 54o / cos 36o | (a)0 | (b)1 | (c)2 | (d)3 |
|
Answer is: Asin 36o / cos 54o - sin 54o / cos 36o
sin (90 - 54)o / cos 54o - sin (90 - 36)o / cos 36o
cos 54o / cos 54o - cos 36o / cos 36o
1 - 1 = 0
6. | Evaluate the cot 12o cot 38o cot 52o cot 60o cot 78o. | (a)√3 | (b)3√3 | (c)1 / √3 | (d)3 / √3 |
|
Answer is: CWe have
cot 12o cot 38o cot 52o cot 60o cot 78o
= (cot 12o cot 78o) (cot 38o cot 52o) cot 60o
= [cot 12o cot (90o - 12o)] [cot 38o cot (90o - 38o)] cot 60o
= [cot 12o tan 12o] [cot 38o tan 38o] cot 60o
= 1 x 1 x 1 / √3 = 1 / √3
7. | If tan 2X = cot (X + 6o), where 2X and X + 6o are acute angles.
Find the value of X. | (a)14o | (b)25o | (c)28o | (d)32o |
|
Answer is: CWe have,
tan 2X = cot (X + 6o)
cot (90o - 2X) = cot (X + 6o)
90 – 2X = X + 6o
3X = 84o
X = 28o
8. | Find the value of [(1 + cot X) - cosec X] [1 + tan X + sec X] | (a)0 | (b)2 | (c)6 | (d)8 |
|
Answer is: B[(1 + cot X) - cosec X] [1 + tan X + sec X]
[1 + (cos X / sin X) - (1 / sin X)][1 + (sin X / cos X) + (1 / cos X)]
= [(sin X + cos X - 1) / sin X][(cos X + sin X - 1) / cos X]
= [(sin X + cos X)2 - 1 / sin X cos X]
(sin 2 X + cos2 X + 2 sin X cos X - 1) / sin X cos X
(1 + 2 sin X cos X - 1) / sin X cos X = 2
Comments